首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2417篇
  免费   302篇
  国内免费   557篇
  2024年   3篇
  2023年   113篇
  2022年   79篇
  2021年   130篇
  2020年   129篇
  2019年   166篇
  2018年   161篇
  2017年   155篇
  2016年   154篇
  2015年   113篇
  2014年   129篇
  2013年   192篇
  2012年   111篇
  2011年   133篇
  2010年   114篇
  2009年   128篇
  2008年   159篇
  2007年   167篇
  2006年   165篇
  2005年   121篇
  2004年   110篇
  2003年   88篇
  2002年   74篇
  2001年   53篇
  2000年   44篇
  1999年   39篇
  1998年   38篇
  1997年   23篇
  1996年   24篇
  1995年   19篇
  1994年   25篇
  1993年   12篇
  1992年   18篇
  1991年   10篇
  1990年   13篇
  1989年   12篇
  1988年   7篇
  1987年   7篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1982年   8篇
  1981年   1篇
  1980年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有3276条查询结果,搜索用时 175 毫秒
61.
基于高分辨率遥感影像的森林地上生物量估算   总被引:4,自引:0,他引:4  
黄金龙  居为民  郑光  康婷婷 《生态学报》2013,33(20):6497-6508
以南京市紫金山林区为研究区,利用e-Cognition面向对象分类方法,基于光谱和空间信息融合后的IKONOS影像提取单木树冠阳性冠幅(PoCA, Positive crown area)信息,并结合野外实测的样方生物量数据,分别建立了针叶林和阔叶林地上生物量 (AGB, Aboveground Biomass)的遥感估算模型,并利用实测森林生物量数据对模型进行了验证。结果表明,基于遥感影像提取的PoCA与实测AGB存在较好的非线性相关关系,所建针叶林AGB估算模型的可靠性优于阔叶林模型。对建模样本而言,估算的针叶林和阔叶林AGB与观测数据比较的R2分别为0.62 (P<0.01,n=9) 和0.56(P<0.01,n=16)。验证表明,所建AGB估算模型的可靠性较好,估算的针叶林和阔叶林AGB与观测数据比较的R2分别为0.55(P<0.01,n=6) 和0.52(P<0.01,n=10),但当AGB较低时,模型结果偏高,AGB较低时,模型结果偏低。研究说明通过高分辨率遥感数据的融合、提取树冠信息进行生物量估算是可行性的。  相似文献   
62.
Chromosomal rearrangements may directly cause hybrid sterility and can facilitate speciation by preserving local adaptation in the face of gene flow. We used comparative linkage mapping with shared gene‐based markers to identify potential chromosomal rearrangements between the sister monkeyflowers Mimulus lewisii and Mimulus cardinalis, which are textbook examples of ecological speciation. We then remapped quantitative trait loci (QTLs) for floral traits and flowering time (premating isolation) and hybrid sterility (postzygotic isolation). We identified three major regions of recombination suppression in the M. lewisii × M. cardinalis hybrid map compared to a relatively collinear Mimulus parishii × M. lewisii map, consistent with a reciprocal translocation and two inversions specific to M. cardinalis. These inferences were supported by targeted intraspecific mapping, which also implied a M. lewisii‐specific reciprocal translocation causing chromosomal pseudo‐linkage in both hybrid mapping populations. Floral QTLs mapped in this study, along with previously mapped adaptive QTLs, were clustered in putatively rearranged regions. All QTLs for male sterility, including two underdominant loci, mapped to regions of recombination suppression. We argue that chromosomal rearrangements may have played an important role in generating and consolidating barriers to gene flow as natural selection drove the dramatic ecological and morphological divergence of these species.  相似文献   
63.
Reports indicate that leaf onset (leaf flush) of deciduous trees in cool‐temperate ecosystems is occurring earlier in the spring in response to global warming. In this study, we created two types of phenology models, one driven only by warmth (spring warming [SW] model) and another driven by both warmth and winter chilling (parallel chill [PC] model), to predict such phenomena in the Japanese Islands at high spatial resolution (500 m). We calibrated these models using leaf onset dates derived from satellite data (Terra/MODIS) and in situ temperature data derived from a dense network of ground stations Automated Meteorological Data Acquisition System. We ran the model using future climate predictions created by the Japanese Meteorological Agency's MRI‐AGCM3.1S model. In comparison to the first decade of the 2000s, our results predict that the date of leaf onset in the 2030s will advance by an average of 12 days under the SW model and 7 days under the PC model throughout the study area. The date of onset in the 2090s will advance by 26 days under the SW model and by 15 days under the PC model. The greatest impact will occur on Hokkaido (the northernmost island) and in the central mountains.  相似文献   
64.
This article reports a novel multispectral image processing technique for rapid, noninvasive quantification of biomass concentration in attached and suspended algae cultures. Monitoring the biomass concentration is critical for efficient production of biofuel feedstocks, food supplements, and bioactive chemicals. Particularly, noninvasive and rapid detection techniques can significantly aid in providing delay‐free process control feedback in large‐scale cultivation platforms. In this technique, three‐band spectral images of Anabaena variabilis cultures were acquired and separated into their red, green, and blue components. A correlation between the magnitude of the green component and the areal biomass concentration was generated. The correlation predicted the biomass concentrations of independently prepared attached and suspended cultures with errors of 7 and 15%, respectively, and the effect of varying lighting conditions and background color were investigated. This method can provide necessary feedback for dilution and harvesting strategies to maximize photosynthetic conversion efficiency in large‐scale operation. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:808–816, 2013  相似文献   
65.
66.
Understanding what environmental drivers control the position of the alpine tree line is important for refining our understanding of plant stress and tree development, as well as for climate change studies. However, monitoring the location of the tree line position and potential movement is difficult due to cost and technical challenges, as well as a lack of a clear boundary. Advanced remote sensing technologies such as Light Detection and Ranging (LiDAR) offer significant potential to map short individual tree crowns within the transition zone despite the lack of predictive capacity. Process‐based forest growth models offer a complementary approach by quantifying the environmental stresses trees experience at the tree line, allowing transition zones to be defined and ultimately mapped. In this study, we investigate the role remote sensing and physiological, ecosystem‐based modeling can play in the delineation of the alpine tree line. To do so, we utilize airborne LiDAR data to map tree height and stand density across a series of altitudinal gradients from below to above the tree line within the Swiss National Park (SNP), Switzerland. We then utilize a simple process‐based model to assess the importance of seasonal variations on four climatically related variables that impose non‐linear constraints on photosynthesis. Our results indicate that all methods predict the tree line to within a 50 m altitudinal zone and indicate that aspect is not a driver of significant variations in tree line position in the region. Tree cover, rather than tree height is the main discriminator of the tree line at higher elevations. Temperatures in fall and spring are responsible for the major differences along altitudinal zones, however, changes in evaporative demand also control plant growth at lower altitudes. Our results indicate that the two methods provide complementary information on tree line location and, when combined, provide additional insights into potentially endangered forest/grassland transition zones.  相似文献   
67.
Cytogenetic studies in birds are still scarce compared to other vertebrates. Woodcreepers (Dendrocolaptidae) are part of a highly specialized group within the Suboscines of the New World. They are forest birds exclusive to the Neotropical region and similar to woodpeckers, at a comparable evolutionary stage. This paper describes for the first time the karyotypes of the Olivaceous and the Narrow-billed Woodcreeper using conventional staining with Giemsa and silver nitrate staining of the nucleolar organizer regions (Ag-NORs). Metaphases were obtained by fibular bone marrow culture. The chromosome number of the Olivaceous Woodcreeper was 2n = 82 and of the Narrow-billed Woodcreeper, 2n = 82. Ag-NORs in the largest macrochromosome pair and evidence of a chromosome inversion are described herein for the first time for this group.  相似文献   
68.
The rate of vegetation recovery from boreal wildfire influences terrestrial carbon cycle processes and climate feedbacks by affecting the surface energy budget and land‐atmosphere carbon exchange. Previous forest recovery assessments using satellite optical‐infrared normalized difference vegetation index (NDVI) and tower CO2 eddy covariance techniques indicate rapid vegetation recovery within 5–10 years, but these techniques are not directly sensitive to changes in vegetation biomass. Alternatively, the vegetation optical depth (VOD) parameter from satellite passive microwave remote sensing can detect changes in canopy biomass structure and may provide a useful metric of post‐fire vegetation response to inform regional recovery assessments. We analyzed a multi‐year (2003–2010) satellite VOD record from the NASA AMSR‐E (Advanced Microwave Scanning Radiometer for EOS) sensor to estimate forest recovery trajectories for 14 large boreal fires from 2004 in Alaska and Canada. The VOD record indicated initial post‐fire canopy biomass recovery within 3–7 years, lagging NDVI recovery by 1–5 years. The VOD lag was attributed to slower non‐photosynthetic (woody) and photosynthetic (foliar) canopy biomass recovery, relative to the faster canopy greenness response indicated from the NDVI. The duration of VOD recovery to pre‐burn conditions was also directly proportional (P < 0.01) to satellite (moderate resolution imaging spectroradiometer) estimated tree cover loss used as a metric of fire severity. Our results indicate that vegetation biomass recovery from boreal fire disturbance is generally slower than reported from previous assessments based solely on satellite optical‐infrared remote sensing, while the VOD parameter enables more comprehensive assessments of boreal forest recovery.  相似文献   
69.
Diagnostic carbon cycle models produce estimates of net ecosystem production (NEP, the balance of net primary production and heterotrophic respiration) by integrating information from (i) satellite‐based observations of land surface vegetation characteristics; (ii) distributed meteorological data; and (iii) eddy covariance flux tower observations of net ecosystem exchange (NEE) (used in model parameterization). However, a full bottom‐up accounting of NEE (the vertical carbon flux) that is suitable for integration with atmosphere‐based inversion modeling also includes emissions from decomposition/respiration of harvested forest and agricultural products, CO2 evasion from streams and rivers, and biomass burning. Here, we produce a daily time step NEE for North America for the year 2004 that includes NEP as well as the additional emissions. This NEE product was run in the forward mode through the CarbonTracker inversion setup to evaluate its consistency with CO2 concentration observations. The year 2004 was climatologically favorable for NEP over North America and the continental total was estimated at 1730 ± 370 TgC yr?1 (a carbon sink). Harvested product emissions (316 ± 80 TgC yr?1), river/stream evasion (158 ± 50 TgC yr?1), and fire emissions (142 ± 45 TgC yr?1) counteracted a large proportion (35%) of the NEP sink. Geographic areas with strong carbon sinks included Midwest US croplands, and forested regions of the Northeast, Southeast, and Pacific Northwest. The forward mode run with CarbonTracker produced good agreement between observed and simulated wintertime CO2 concentrations aggregated over eight measurement sites around North America, but overestimates of summertime concentrations that suggested an underestimation of summertime carbon uptake. As terrestrial NEP is the dominant offset to fossil fuel emission over North America, a good understanding of its spatial and temporal variation – as well as the fate of the carbon it sequesters ─ is needed for a comprehensive view of the carbon cycle.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号